Brain Tumors and Neurofibromatosis Type 1

Virginia L. Harrod, MD, PhD November 13, 2021

The Brain and NF-1

- Other Brain/Neurological Concerns (Dr. Moodley)
 - Headaches
 - Hydrocephalus
 - Epilepsy, stroke, Moyamoya
 - Neurocognitive concerns

The Brain and NF-1

- Evaluations for NF-1 patients; when to look at the brain
- Imaging Recommendations
- Tumors of the Brain in NF-1
 - Optic pathway tumors
 - Low grade gliomas (Brainstem gliomas)
 - High grade gliomas
 - Intraspinal tumors
 - MPNST (in CNS and outside CNS) covered by other presentation
- Treatment and Outcomes

Evaluations of the Brain in NF-1

- Routine screening?
 - Physical evaluations YES
 - Neuropsychological evaluations YES
 - Radiographic evaluations DEPENDS be careful what you look for
 - UBOs/FASIs
 - Unidentified bright objects
 - Focal Areas of Signal Intensity
 - Any abnormality tends to lead to more scans/anesthesia/contrast administration, etc; these are not without toxicity

FASI/UBOs

- Not 'pathological' BUT
 - Perhaps connected to cognitive impairment (especially in thalamic area)
- 86% of children have this finding (<10yo)
- Myelin changes with no inflammatory component (water component)
- Sometimes regress (over 10yo)

Indications for MRI (brain) in NF1 patients

- Neurological symptoms (decreased sensation/function)
- Seizures
- Headaches (increasing in severity and/or frequency)
- Stroke/TIA
- Vision changes (ophthal exam)
- Precocious puberty (early puberty)
- Head/neck plexiform neurofibroma increasing in size/pain
- Cognitive decline
- Leg length discrepancy/asymmetric extremities

Brain MRI: Positive or Negative?

- Negative
 - This is just a moment in time and doesn't predict the future
 - Doesn't change the need for routine screening
- Positive
 - Doesn't mean treatment is indicated
 - Does usually lead to more scans, more anesthesia, more contrast administration, more anxiety

Oncological Complications of the Brain and NF-1

• Tumors

- Optic pathway tumors
- Low grade gliomas (Brainstem tumors)
- High grade gliomas
- Intraspinal neurofibromas
- MPNST covered by other presentation
- Treatments
- Outcomes/Prognosis

NF-1 and Brain Tumors

- 15-20% of NF1 children will develop OPG/CNS tumors
- OPGs
 - Of these, 30-50% will be symptomatic
 - 1/3 require intervention (treatment)
 - Most commonly occur prior to age 6yo
 - Develop anywhere on the optic pathway
 - Location determines symptoms

Optic Pathway Gliomas (OPG)

- NF screening ophthal annual evals (possibly every 6 months) from diagnosis of NF-1
- Most will present prior to 6 years of age; ophthal exams hard (but not impossible for pediatric ophthalmologists knowledgeable about NF)
- MRI for screening is not recommended (NF-OPG Task Force recs¹)
 - Risk: anesthesia, contrast allergies/reactions, stress/anxiety
 - Benefit: early detection but still no intervention unless vision loss/changes, so ophthal evals should theoretically 'catch' these cases
- <50% of patients with OPG have vision changes</p>

Optic Pathway Gliomas (OPG)

- Chemotherapy can help stop further vision loss; doesn't always regain vision (30 % might improve vision)
- Risk factors for vision loss
 - Young age (< 2 yo) or older age (>10yo)
 - Optic tract/radiation involvement
 - female

Optic Pathway Gliomas (OPG) – Location/Loss

Commons.Wikimedia.org

The University of Texas at Austin Dell Medical School¹²

Optic Pathway Gliomas (OPG)

Chiam location – bilateral loss of vision; precocious puberty possible

Bilateral Optic nerve involvement L>R

The University of Texas at Austin Dell Medical School

Optic Pathway Gliomas (OPG) - Treatment - for VISION LOSS or INCREASING SIZE***

- Pilocytic astrocytomas (though usually not biopsied)
- Chemotherapy
 - Carboplatin/Vincristine
 - Hearing loss, peripheral neuropathies (pain in hands/feet; change in walking ability)
 - Vinblastine
 - Other
- Treatment lasts 12-15 months
 - Requires weekly IV infusions of medications/lab checks
 - Surgery to have Port-A-Catheter placed for blood work
 - MRI scans every 3 months

dell children's

Optic Pathway Gliomas (OPG).- Treatment

- New Drug therapies (especially NF-1 Plexiform Neurofibromas)
 - MEK inhibitors
 - Selumetinib/Koselugo (AstraZeneca) FDA approval April 2020
 - 66% response (shrinkage) in PNs
 - Testing in over 10 different types of tumors (including brain tumors)
- Other Drug therapies
 - mTOR inhibitors (Everolimus, Serolimus)
 - EGFR target (Avastin (bevacizumab))

Optic Pathway Gliomas (OPG) - Treatment

- Children's Oncology Group
 - Phase 3 study (for OPG and other brain tumors)
 - Historical chemotherapy against MEK inhibitor (selumetinib)
 - RANDOMIZED 1:2 (2/3 get selumetinib)
 - OPENED 10/2019
 - Ongoing patient enrollment (expect about 5 years to enroll)

OPG before/after treatment (Carbo/VCR)

The University of Texas at Austin Dell Medical School

Optic Pathway Gliomas (OPG) - Outcomes

- Carbo/Vincristine (Historical)
 - 5 yr Event Free Survival = 69% (lower for non-NF patients)
 - FFS is not the same as OS
 - 20% side effects of peripheral neuropathies
 - 10% hypersensitivity reactions to carboplatin
 - 32% some vision improvement; 40% with vision stabilization; 28% worsening*
- Goals of therapy: preservation of VISION
 - Radiographic outcomes do not predict visual outcomes*

Optic Pathway Gliomas (OPG)

- Goals of Study
 - Do better with fewer toxicities
- MEK inhibitor
 - Ease of use (oral pill)
 - Difficulty of use (pill swallowing)
 - Daily use
 - 2 years of treatment
 - Long term outcomes not known but with PN \rightarrow sometimes tumors regrew when med stopped

MEK inhibitors – not an automatic home run (for brain tumors)

Side Effects

- GI disturbance (70%)
- skin toxicity (50-90%)
- eye toxicity (retinal detachment) 15-20%
- cardiac toxicity (20-25%)

NF-1 and Brain Tumors

- 15-20% of NF1 children will develop OPG/CNS tumors
- OPGs
- Other CNS tumors
 - Low Grade Gliomas (Brainstem Gliomas)
 - High Grade Gliomas
 - Intraspinal neurofibromas/tumors
 - MPNST (covered in another lecture)

Low Grade Gliomas

- Location: most commonly brain stem (Brainstem Glioma)
- Poorly studied (vs OPG)
- Usually indolent; discovered incidentally (following OPGs)
- Often Pilocytic astrocytomas
- Age: avg 7-8yo

The University of Texas at Austin Dell Medical School

Selt, et al, J. Neurooncol 2020
 Fagusaro, et al, Lancet Oncol, 2019

Brainstem Gliomas in NF-1

Common Symptoms

- Headache
- Nausea/vomiting

Often a/w hydrocephalus

Other possible symptoms

- Cranial nerve palsies (abnormal facial movements)
- Ataxia (balance difficulty)

Brainstem Gliomas

- Treatment:
- Not always needed ¹
 - 7 patients with DIFFUSE involvement
 - 4 with symptoms
 - 4 followed without treatment; all alive and neurologically stable (median=40 months);
 - Note: diffuse pontine tumors in non-NF patients has dismal prognosis

Brainstem Gliomas

- Treatment:
- Not always needed ¹
 - 21 patients with DIFFUSE involvement
 - 12 with symptoms; 9 without symptoms
 - Followed 3.75 years; 10 showed progression → of these 7 regressed/stabilized without intervention
 - 4 patients received treatment (focal enhancing tumors); stable over 4 years after treatment

Brainstem Gliomas

- Treatment for rapid growth/clinical worsening
 Carbo/VCR
- Phase 2 study results
 - Trametinib¹: 18 patients (8 with NF1)
 - 4 showed stable/improved disease
 - Selumetinib²: 50 patients
 - 70% considered partial responders

. Selt, et al, J. Neurooncol 2020

2. Fagusaro, et al, Lancet Oncol, 2019

The University of Texas at Austin Dell Medical School 26

High grade glioma*

- Not progression of OPG/BSG
- Less common, <1% of all NF-1 pts
- occur in adults with NF-1 at younger ages than non NF-1
- Considered "malignant"; no cure
- Prognosis dismal: average survival ~15 months after diagnosis

Spinal tumors

- Rare: generally case reports
- Extensive debilitation
- Usually present with spinal cord compression
- Surgery: often first step in treatment

Spinal tumors – Plexiform NF extending INTO spinal cord

Conversion to MPNST

Brain Tumors in NF-1

- Young children (<5yo) \rightarrow Optic pathway gliomas
- Mid childhood \rightarrow Low grade gliomas (typically brainstem)
- Early Adulthood \rightarrow increased incidence of high grade glioma
- Peripheral nerve tumor conversion to MPNST (Malignant Peripheral Nerve Sheath Tumors)

CNS tumors in NF-1 patients - Treatment

- Complete resection = 90% overall survival at 10 years
 - No need for chemotherapy or radiation therapy
 - Rare due to location
- Radiation is effective therapy, but too risky for routine use
 - Side effects (acute)
 - Possible need for central line, anesthesia, headaches, fatigue
 - Late effects
 - second malignancies
 - vasculopathies
 - Neurocognitive effects

• Thus CHEMOTHERAPY (Medical therapy) is mainstay of treatment

CNS tumors in NF-1 patients - Treatment

- CHEMOTHERAPY (Medical therapy) is mainstay of treatment
 - Historical: Vincristine/Carboplatin (or Vinblastine)
 - Current: Research trials at time of diagnosis testing historical against MEK inhibitors
 - Other possibilities:
 - mTOR inhibitors (Everolimus, Serolimus)
 - Bevacizumab (Avastin) ? Temporary response?
 - Temozolomide (alkylating agent risk- 2nd malignancies)

CNS tumors in NF-1 patients - Outcomes

- Low grade gliomas (EFS = 60-70%; OS = 90-100%)¹
 - OPG (~67% occur here)
 - Goal to preserve vision
 - Brainstem glioma (~15-20%)
 - Other CNS tumors (~10-15%)
 - OS = 90% with resection, without chemo/radiation
- High grade gliomas (adult, rare)
- Spinal tumors (debilitating, rare)

Thank you for your time Questions?

